
Respirators and Dust Hazards

Introduction

What types of Dust are there? Why is Dust Control necessary? What are the Health Hazards of Dust? How can Dust be controlled?

What is Dust?

Dust is – 1 Micron In Size!

This Photo by Unknown Author; not property of Sussex Environmental

How is Fresh Dust Generated?

Fresh dust is generated by one or multiple of the following:

- Impact
- Abrasions
- Crushing
- Grinding

This Photo by Unknown Author; not property of Sussex Environmental

How is Dust Recirculated?

- Release of previously generated dust during such processing operations as:
- Loading

- Dumping
- Transferring
- Wind

Movement of equipment and workers

This Photo by Unknown Author; not property of Sussex Environmental

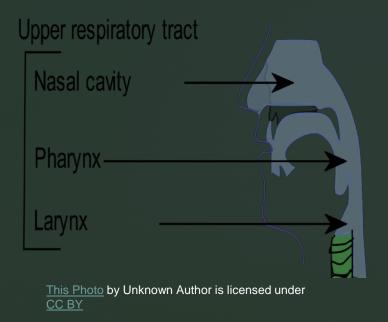
Dust Classification

1. Fibrogenic Dust (Disease Causing)

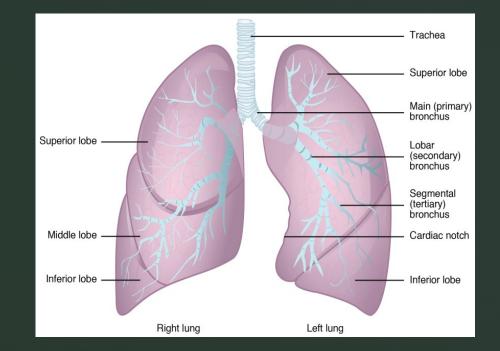
- Crystalline silica (Quartz)
- Asbestos

- Beryllium
- 2. Nuisance Dust
 - Dust that does <u>not</u> contain harmful quantities of asbestos and less than 1% quartz

Dust Classification by Size


Dust is Classified into <u>TWO</u> size categories
Respirable Dust
Inhalable Dust

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>


Inhalable Dust

Dust that enters the body, but is trapped in the nose, throat and upper respiratory tract.

Respirable Dust

Dust particles small enough (less than 10 microns) to penetrate past the upper respiratory tract and deep into the lungs.

This Photo by Unknown Author is licensed under <u>CC BY</u>

Why Control Dust

- Occupational respiratory diseases
- Irritation to eyes, nose, and throat
- Skin irritation

- Damage to Equipment
- Impaired Visibility
- Community Relation
- Explosions

This Photo by Unknown Author; not property of Sussex Environmental

Health Hazards

The harm dust can cause depends on the following:

• Dust composition

- Dust concentration
- Amount of exposure time
- Particle size and shape

Excessive exposure to harmful dusts can cause pneumoconiosis- a dust related lung disease.

Dust Related Lung Diseases

1. Silicosis

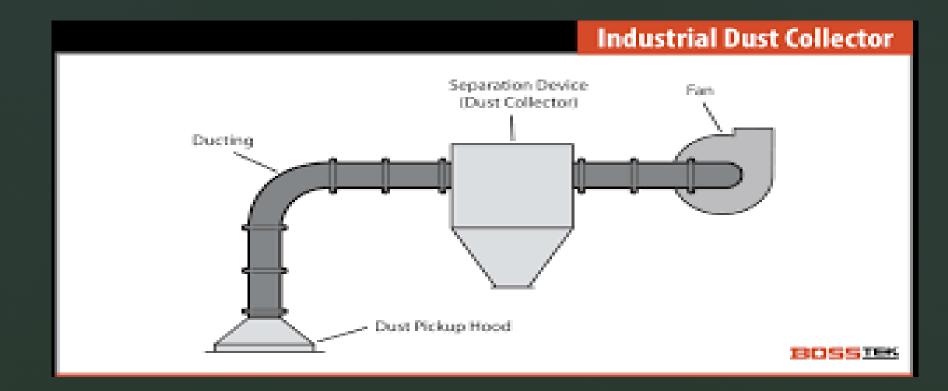
- Caused by Silica Dust
 2 Black Lung
- 2. Black Lung
- Caused by Coal Dust
- 3. Asbestosis
- Caused by Asbestos Dust

Damage from these diseases is **Irreversible**!

This Photo by Unknown Author is licensed under <u>CC BY-SA-NC</u>

Controlling Dust Exposure-Safer Machinery and Tools

• Fully enclosing dusty processes.


- Local exhaust ventilation/dust collection equipment.
- Tools with dust extraction (vacuum) devices.
- Using water to suppress dust.
- Operator enclosures with an air filtration system.
- Use abrasives other than sand for abrasive blasting

Wet Dust Control System

This Photo by Unknown Author; not property of Sussex Environmental

Additional Dust Control System

This Photo by Bosstek.com; not property of Sussex Environmental

Controlling Dust Exposure-Safe Work Procedures

- Wetting down dusty work areas or processes prior to work.
- Working upwind of dust sources where possible.
- Posting warning Signs where necessary.
- Limiting Exposure time.

- Training all employees on appropriate work procedures.
- Good housekeeping practices.

Controlling Dust Exposure -Respiratory Protection

- Fit testing of all employees required to wear respiratory devices.
- Training employees in the proper use of respiratory devices.

- Making sure employees understand the hazards of dust and the importance of respirator use.
- Regular checking and cleaning of non-disposable respirators.

Reasons for Respirators?

- 1. Certain Breathing conditions are hazardous to life and lung.
- 2. The air can be contaminated with: Dusts, Mists, Fumes
- 3. Toxic Vapors
- 4. The air can have too little oxygen

How do we control these Airborne Hazards?

First - Use Engineering Controls to eliminate the hazard. Second - Use Administrative Controls to reduce exposure to the hazard. Last - Use Respirators as a temporary protective measure until Engineering and Administrative Controls are in place.

2 Basic Types of Respirators

Air Purifying Respirators

- Used to filter out or neutralize contaminants
- Examples: Dust; Organic Vapor
- Air Supply Respirators
- Used when there is a lack of oxygen, when the hazard is unknown or is undetectable by smell or taste.
- Examples: Compressor & Hose; SCBA

Filtering Respirators

Particulates - Dusts, Mists & Fumes
 New Classes; N, R, P; 95, 99, 100
 Non-Resistant(Oil), Resistant(Oil), (Oil) Proof
 Toxins - Organics, Acids, etc.
 Neutralizing or Absorbing

Filtering Respirators are Hazard Specific Don't expect one respirator to protect you from all hazards!

How long do Respirators last?

- Particulate (Dust) Filtering Respirators
 Change them when the breathing
 - resistance gets high.
- Toxin Filtering Respirators
- Change when you first smell or taste a contaminant (Break-through)

Health Conditions that Interfere with Respirator Use

- Heart Conditions
- Asthma or other breathing problem
- Claustrophobia (fear of enclosed space)
 Fast Growth Facial Hair

Other Conditions that can Interfere with Respirator Use

Contact Lenses
Eyeglass Temples (certain types)
Skullcaps (Beanies)

Respirators Used at Your Workplace

How to don your respirator.

- Look at the manufacturer's instructions.
- How to clean & Maintain your respirator.
- How to Self-Fit Test your respirator.
- Not possible with Filter-Face Types
- Positive, Negative Test

Sampling Methods

Total Dust- is analyzed using a NIOSH 0500 Method on a Gravimetric 37PVC 5.0 PW or 25PVC 5.0 PW media cassette for any dust that is able to be inhaled into the upper respiratory system

OSHA PEL for Total dust is 15 mg/m3; ACGIH: 10 mg/m3, total dust less than 1% quartz

Respirable Dust- is analyzed using a NIOSH 0600 method on a gravimetric 37PVC 5.0 PW media cassette for any dust that is able to be inhaled into the lower reparatory system and enter the lungs

OSHA PEL for Respirable Dust is 5 mg/m3; ACGIH: 3 mg/m3

Feel free to ask questions or email Susan at Susan.white@mchsi.com